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Motivation

‣ In recent years, few-shot learning has drawn a lot of attention in the machine learning 
community.

‣ A lot of elegant solutions have been developed.
‣ It is worth to investigate the feasibility of applying few-shot learning methods to speech tasks.
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Spoken Term Classification

‣ It aims to recognize spoken terms in the voice signal.
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User-defined Spoken Term Classification

‣ Normally, the spoken term is predefined.
– Given plenty of training data, conventional supervised learning could have solved the 

problem nicely.
‣ What about a user-defined scenario?

– Users can define new spoken terms by providing a few audio examples.
‣ We formulate this problem as a few-shot learning problem, specifically, a few-shot 

classification task.
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Few-Shot Classification

‣ Few-Shot Learning (FSL) Problem is a machine learning problem that learns with limited 
labeled data of target tasks by incorporating external source data, which has a different 
distribution from target data.

‣ Few-Shot Classification is a few-shot learning task, which is defined as N-way, K-shot, where
– N is the number of classes in the target task
– K is the number of examples per class
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Meta-Learning

‣ Most popular solutions of few-shot learning problems right now use meta-learning.
‣ Also known as ‘learning to learn’, aims to make a quick adaptation to new tasks with only a 

few examples.
‣ Many elegant solutions are proposed:

– Matching Network
– Prototypical Network
– Model-Agnostic Meta-Learning
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Model-Agnostic Meta-Learning (MAML)

‣ To train a model which can adapt to any new task using only a few labeled examples
‣ The model is trained on various tasks (meta-tasks) and it treats the entire task as a training 

example
‣ The model is forced to face different tasks so that it can get used to adapting to new tasks
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MAML on Image Tasks
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MAML on Speech Tasks
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MAML – The Meta-learning Stage 

‣ Given an initial model 𝑓! and a meta-task 𝒯", a loss is computed with the support set: 

ℒ#! 𝑓! = − &
(𝒙",𝒚")∈#!

𝒚*𝑙𝑜𝑔𝑓!(𝒙*)

‣ Then a gradient update is done:
𝜃"+ = 𝜃 − 𝛼∇!ℒ#!(𝑓!)

‣ Then another loss is computed with the query set: 

ℒ,! 𝑓!!# = − &
(𝒙$# ,𝒚$# )∈,!

𝒚-+ 𝑙𝑜𝑔𝑓!#(𝒙-+ )

‣ A gradient is computed on equation (3) with respect to 𝜃, the model is updated:
𝜃∗ ← 𝜃 − 𝛽∇!ℒ,!(𝑓!!#) / 𝜃∗ ← 𝜃 − 𝛽∇! ∑" ℒ,!(𝑓!!#)

‣ This is a second-order gradient optimization. 
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MAML – The Fine-tuning Stage

‣ Before evaluation, the model will be fine-tuned for a few iterations according to the equation 
(2):
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Extend the Few-Shot Classification Problem

‣ In most few-shot studies, all the classes are assumed to be new.
‣ In real-life applications, some of the classes are known.
‣ We define an N+M-way, K-shot problem where

– M is the number of fixed classes
– N is the number of new classes in the target task
– K is the number of examples of each new class
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Our approach – Extended MAML

‣ We fix the output positions of the fixed classes in the neural network classifier.
‣ The fixed classes occur in every meta-task in the meta-learning stage.
‣ The adaptation of fixed classes is not needed in the fine-tuning stage as they have already 

been learned in the meta-learning stage.
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Few-Shot Spoken Term Classification

‣ 10+2-way, K-shot
‣ 10 keywords
‣ 2 fixed class: silence and unknown
‣ In the meta-learning stage, meta-

tasks are randomly formed from a 
pool of keywords. 
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The Algorithm
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Experimental Setup

‣ Google Speech Commands dataset (v0.02)
‣ 105,829 1-second audio clips of 35 keywords
‣ We formulate two 10+2-way, K-shot tasks using the same setup as the “Audio Recognition” 

tutorial in the official Tensorflow package
– ten keywords, silence, and unknown
– Digits classification, which uses digits zero to nine as ten keywords
– Commands classification, which contains ten keywords as: “yes”, “no”, “up”, “down”, “left”, 

“right”, “on”, “off”, “stop”, or “go”

17



Model Setup

‣ 40 dimensional MFCCs
‣ CNN based model which contains 4 convolutional blocks
‣ Each block comprises a 3 x 3 convolutions and 64 filters
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Baselines

‣ Two baselines:
– Conventional supervised learning approach
– Original MAML (which treats the 10+2 way problem as a 12-way problem)
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Results on Digits Classification
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Results on Commands Classification
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Observations

‣ The overall accuracy in digit classification is better than in command classification.
– This implies that, in a user-defined scenario,  the system performance will be affected by 

the keywords users pick.
‣ MAML based approaches perform much better than conventional supervised learning in a 

few-shot situation.
‣ Our proposed approach outperforms the original MAML.

– We attribute the improvement to the use of prior information of the fixed classes.
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User-defined vs. Predefined
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Conclusion

‣ In this piece of work, we formulate a user-defined scenario of spoken term classification as a 
few-shot learning problem.

‣ We define a N+M-way K-shot problem which we believe is a more realistic problem.
‣ We solve the problem by extending the original MAML.
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Future Work

‣ There is a performance gap between a user-defined system and a predefined system.
‣ Narrow the gap with data augmentation techniques.
‣ Explore other meta learning methods.
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