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Motivation

~ In recent years, few-shot learning has drawn a lot of attention in the machine learning
community.

~  Alot of elegant solutions have been developed.

~ It is worth to investigate the feasibility of applying few-shot learning methods to speech tasks.



Spoken Term Classification
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It aims to recognize spoken terms in the voice signal.

system




User-defined Spoken Term Classification

»  Normally, the spoken term is predefined.
— Given plenty of training data, conventional supervised learning could have solved the
problem nicely.
~  What about a user-defined scenario?
— Users can define new spoken terms by providing a few audio examples.
~  We formulate this problem as a few-shot learning problem, specifically, a few-shot
classification task.



Few-Shot Classification

»  Few-Shot Learning (FSL) Problem is a machine learning problem that learns with limited
labeled data of target tasks by incorporating external source data, which has a different
distribution from target data.

»  Few-Shot Classification is a few-shot learning task, which is defined as N-way, K-shot, where

— N is the number of classes in the target task
— Kis the number of examples per class
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Meta-Learning

~  Most popular solutions of few-shot learning problems right now use meta-learning.
» Also known as ‘learning to learn’, aims to make a quick adaptation to new tasks with only a
few examples.
~ Many elegant solutions are proposed:
— Matching Network
— Prototypical Network
— Model-Agnostic Meta-Learning



Model-Agnostic Meta-Learning (MAML)

» To train a model which can adapt to any new task using only a few labeled examples

~  The model is trained on various tasks (meta-tasks) and it treats the entire task as a training
example

»  The model is forced to face different tasks so that it can get used to adapting to new tasks
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@ Chelsea Finn, Pieter Abbeel, Sergey Levine, “Model-agnostic meta-learning for fast adaptation of
deep networks,”in Proceedings of the 34th ICML-Volume 70. JMLR. org, 2017, pp. 1126—1135.



MAML on Image Tasks
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MAML on Speech Tasks
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MAML — The Meta-learning Stage

~ Given an initial model fy and a meta-task 7;, a loss is computed with the support set:

Ls (fo) = — 2 yjlogfe(x;) (1)

(x5,¥;)€S; .
inner loop

0; =0 — aVgLs,(f) (2)
~ Then another loss is computed with the query set:

~  Then a gradient update is done:

LQL (fe z yulogfer(xy) (3)

(x1,Y1)€EQ;

~ A gradient is computed on equation (3) with respect to 6, the n%&eéll?so deated:

» This is a second-order gradient optimization. (4)
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MAML — The Fine-tuning Stage
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Before evaluation, the model will be fine-tuned for a few iterations according to the equation

(2):

0; = 0 — aVoLs,(fo)
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Extend the Few-Shot Classification Problem
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In most few-shot studies, all the classes are assumed to be new.

In real-life applications, some of the classes are known.
We define an N+M-way, K-shot problem where

— M s the number of fixed classes

— N is the number of new classes in the target task

— Kiis the number of examples of each new class
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Our approach — Extended MAML

~ We fix the output positions of the fixed classes in the neural network classifier.

»  The fixed classes occur in every meta-task in the meta-learning stage.

~  The adaptation of fixed classes is not needed in the fine-tuning stage as they have already
been learned in the meta-learning stage.
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Few-Shot Spoken Term Classification

»  10+2-way, K-shot
» 10 keywords

~ 2 fixed class: silence and unknown
> In the meta-learning stage, meta-
tasks are randomly formed from a

pool of keywords.
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Fig. 1. Framework of our extended-MAML approach for few-

shot spoken term classification.
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The Algorithm

Algorithm 1 extended-MAML approach for few-shot spoken term classification

Require: p(7) : distribution over tasks
Require: X : training keywords set
Require: S;; : silence class set, U, : unknown class set
Require: S; : support set, Q;: query set
Require: «, 3: learning rates
1: Randomly initialize base model parameters 6
2: while not done do
3: Sample a batch of meta-tasks 7; ~ p(7T)

4 for all 7; do

5; Sample a support set S; from X

6 Compute the gradient VgL, (fo) using S; and L, (fo)

7 Update base model parameters with gradient descent: 6, = 6 —
aVeLs,(fo) > step 6 and step 7 can be repeated for several times

o

Sample a query set Q; from the union {X, S;;, U} > selected keywords
from X in Q; and S; within 7; are the same
9: Compute the loss Lo, (fy:) using Q; and the updated model fo
10: end for
i Update parameters 6 using each Q; and Lo, (for): € < 0 — Vg >, Lo, (for)
12: end while
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Experimental Setup

~  Google Speech Commands dataset (v0.02)
~ 105,829 1-second audio clips of 35 keywords
- We formulate two 10+2-way, K-shot tasks using the same setup as the “Audio Recognition”
tutorial in the official Tensorflow package
— ten keywords, silence, and unknown
— Digits classification, which uses digits zero to nine as ten keywords

— Commands classification, which contains ten keywords as: “yes”, “no”, “up”, “down”, “left”,

“right”, “On”’ “Off”’ “Stop”, Or “gO”

oy
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Model Setup

>

>

>

40 dimensional MFCCs
CNN based model which contains 4 convolutional blocks
Each block comprises a 3 x 3 convolutions and 64 filters
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Baselines

>

Two baselines:
— Conventional supervised learning approach
— OQOriginal MAML (which treats the 10+2 way problem as a 12-way problem)
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Results on Digits Classification

Table 1. Accuracy with 95% confidence intervals on digits
classification

Methods |-shot 5-shot 10-shot

Superv. L. 18.14 £ 0.44 2483 +£0.38 28.07 £0.34
MAML-ori  44.60 £098 60.88 =0.58 65.18 = 0.62
MAML-ext 47.42+0.96 63.22+0.71 69.48 = 0.47
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Results on Commands Classification

Table 2. Accuracy with 95% confidence intervals on com-
mands classification

Methods |-shot 5-shot 10-shot

Superv. L. 17.03 £ 0.48 2242 +4+0.33 25.6+0.26
MAML-or1  33.35£0.80 50.31 £0.50 57.34 £0.41
MAML-ext 39.54 +£0.62 52.20 +0.51 59.36 &+ 0.39
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Observations

~  The overall accuracy in digit classification is better than in command classification.
— This implies that, in a user-defined scenario, the system performance will be affected by
the keywords users pick.
~  MAML based approaches perform much better than conventional supervised learning in a
few-shot situation.
> Qur proposed approach outperforms the original MAML.
— We attribute the improvement to the use of prior information of the fixed classes.
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User-defined vs. Predefined
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Fig. 2. Accuracy with changing shot on digits classification.
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Conclusion

~ In this piece of work, we formulate a user-defined scenario of spoken term classification as a
few-shot learning problem.

»  We define a N+M-way K-shot problem which we believe is a more realistic problem.

~  We solve the problem by extending the original MAML.
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Future Work

>

>

>

There is a performance gap between a user-defined system and a predefined system.
Narrow the gap with data augmentation techniques.
Explore other meta learning methods.
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