An Investigation of Few-shot Learning in Spoken Term Classification

Yangbin Chen¹, Tom Ko², Lifeng Shang³, Xiao Chen³, Xin Jiang³, Qing Li⁴

1. City University of Hong Kong

2. Southern University of Science and Technology

3. Huawei Noah's Ark Lab

4. The Hong Kong Polytechnic University

INTERSPEECH 2020

Motivation

- In recent years, few-shot learning has drawn a lot of attention in the machine learning community.
- A lot of elegant solutions have been developed.
- It is worth to investigate the feasibility of applying few-shot learning methods to speech tasks.

Spoken Term Classification

It aims to recognize spoken terms in the voice signal.

User-defined Spoken Term Classification

- Normally, the spoken term is predefined.
 - Given plenty of training data, conventional supervised learning could have solved the problem nicely.
- What about a user-defined scenario?
 - Users can define new spoken terms by providing a few audio examples.
- We formulate this problem as a few-shot learning problem, specifically, a few-shot classification task.

Few-Shot Classification

- Few-Shot Learning (FSL) Problem is a machine learning problem that learns with limited labeled data of target tasks by incorporating external source data, which has a different distribution from target data.
- Few-Shot Classification is a few-shot learning task, which is defined as N-way, K-shot, where
 - N is the number of classes in the target task
 - K is the number of examples per class

Meta-Learning

- Most popular solutions of few-shot learning problems right now use meta-learning.
- Also known as 'learning to learn', aims to make a quick adaptation to new tasks with only a few examples.
- Many elegant solutions are proposed:
 - Matching Network
 - Prototypical Network
 - Model-Agnostic Meta-Learning

Model-Agnostic Meta-Learning (MAML)

- To train a model which can adapt to any new task using only a few labeled examples
- The model is trained on various tasks (meta-tasks) and it treats the entire task as a training example
- The model is forced to face different tasks so that it can get used to adapting to new tasks

Chelsea Finn, Pieter Abbeel, Sergey Levine, "Model-agnostic meta-learning for fast adaptation of deep networks,"in Proceedings of the 34th ICML-Volume 70. JMLR. org, 2017, pp. 1126–1135.

MAML on Image Tasks

MAML on Speech Tasks

MAML – The Meta-learning Stage

• Given an initial model f_{θ} and a meta-task \mathcal{T}_i , a loss is computed with the support set:

$$\mathcal{L}_{S_i}(f_{\theta}) = -\sum_{(x_j, y_j) \in S_i} y_j log f_{\theta}(x_j) \quad (1)$$

Then a gradient update is done:
$$\theta'_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_{S_i}(f_{\theta}) \quad (2)$$

$$\theta_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_{S_i}(f_{\theta})$$

another loss is computed with the query set:

Then another loss is computed with the query set:

$$\mathcal{L}_{Q_i}\left(f_{\theta'_i}\right) = -\sum_{(x'_u, y'_u) \in Q_i} y'_u log f_{\theta'}(x'_u) \tag{3}$$

• A gradient is computed on equation (3) with respect to θ , the model is updated:

$$\theta^* \leftarrow \theta - \beta \nabla_{\theta} \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal{L}_{Q_i}(f_{\theta'_i}) / \theta^* \leftarrow \theta - \beta \nabla_{\theta} \sum_i \mathcal$$

This is a second-order gradient optimization.

(4)

MAML – The Fine-tuning Stage

Before evaluation, the model will be fine-tuned for a few iterations according to the equation (2):

$$\theta_i' = \theta - \alpha \nabla_\theta \mathcal{L}_{S_i}(f_\theta)$$

Extend the Few-Shot Classification Problem

- In most few-shot studies, all the classes are assumed to be new.
- In real-life applications, some of the classes are known.
- We define an N+M-way, K-shot problem where
 - M is the number of **fixed** classes
 - N is the number of **new** classes in the target task
 - K is the number of examples of each **new** class

Our approach – Extended MAML

- ► We fix the output positions of the fixed classes in the neural network classifier.
- The fixed classes occur in every meta-task in the meta-learning stage.
- The adaptation of fixed classes is not needed in the fine-tuning stage as they have already been learned in the meta-learning stage.

Few-Shot Spoken Term Classification

- 10+2-way, K-shot
- 10 keywords
- 2 fixed class: silence and unknown
- In the meta-learning stage, metatasks are randomly formed from a pool of keywords.

Fig. 1. Framework of our extended-MAML approach for fewshot spoken term classification.

The Algorithm

Algorithm 1 extended-MAML approach for few-shot spoken term classification
Require: $p(\mathcal{T})$: distribution over tasks
Require: \mathcal{X} : training keywords set
Require: S_{il} : silence class set, U_{nk} : unknown class set
Require: S_i : support set, Q_i : query set
Require: α , β : learning rates
1: Randomly initialize base model parameters $\boldsymbol{\theta}$
2: while not done do
3: Sample a batch of meta-tasks $\mathcal{T}_i \sim p(\mathcal{T})$
4: for all \mathcal{T}_i do
5: Sample a support set S_i from \mathcal{X}
6: Compute the gradient $\nabla_{\theta} \mathcal{L}_{\mathcal{S}_i}(f_{\theta})$ using \mathcal{S}_i and $\mathcal{L}_{\mathcal{S}_i}(f_{\theta})$
7: Update base model parameters with gradient descent: $ heta_i' = heta - heta$
$\alpha \nabla_{\theta} \mathcal{L}_{\mathcal{S}_i}(f_{\theta})$ \triangleright step 6 and step 7 can be repeated for several times
8: Sample a query set Q_i from the union $\{\mathcal{X}, \mathcal{S}_{il}, \mathcal{U}_{nk}\}$ \triangleright selected keywords
from \mathcal{X} in \mathcal{Q}_i and \mathcal{S}_i within \mathcal{T}_i are the same
9: Compute the loss $\mathcal{L}_{\mathcal{Q}_i}(f_{\theta'_i})$ using \mathcal{Q}_i and the updated model $f_{\theta'}$
10: end for
11: Update parameters $\boldsymbol{\theta}$ using each \mathcal{Q}_i and $\mathcal{L}_{\mathcal{Q}_i}(f_{\boldsymbol{\theta}'})$: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \beta \nabla_{\boldsymbol{\theta}} \sum_i \mathcal{L}_{\mathcal{Q}_i}(f_{\boldsymbol{\theta}'_i})$
12: end while

Experimental Setup

- Google Speech Commands dataset (v0.02)
- 105,829 1-second audio clips of 35 keywords
- We formulate two 10+2-way, K-shot tasks using the same setup as the "Audio Recognition" tutorial in the official Tensorflow package
 - ten keywords, silence, and unknown
 - Digits classification, which uses digits zero to nine as ten keywords
 - Commands classification, which contains ten keywords as: "yes", "no", "up", "down", "left", "right", "on", "off", "stop", or "go"

Model Setup

- 40 dimensional MFCCs
- CNN based model which contains 4 convolutional blocks
- Each block comprises a 3 x 3 convolutions and 64 filters

Baselines

- Two baselines:
 - Conventional supervised learning approach
 - Original MAML (which treats the 10+2 way problem as a 12-way problem)

Results on Digits Classification

 Table 1. Accuracy with 95% confidence intervals on digits

 classification

1-shot	5-shot	10-shot
18.14 ± 0.44	24.83 ± 0.38	28.07 ± 0.34
44.60 ± 0.98	60.88 ± 0.58	65.18 ± 0.62
$\textbf{47.42} \pm \textbf{0.96}$	$\textbf{63.22} \pm \textbf{0.71}$	$\textbf{69.48} \pm \textbf{0.47}$
	$1-\text{shot} \\ 18.14 \pm 0.44 \\ 44.60 \pm 0.98 \\ 47.42 \pm 0.96 \\ 47.42$	1-shot5-shot 18.14 ± 0.44 24.83 ± 0.38 44.60 ± 0.98 60.88 ± 0.58 47.42 ± 0.96 63.22 ± 0.71

Results on Commands Classification

 Table 2. Accuracy with 95% confidence intervals on commands classification

munus emponieurion					
Methods	1-shot	5-shot	10-shot		
Superv. L.	17.03 ± 0.48	22.42 ± 0.33	25.6 ± 0.26		
MAML-ori	33.35 ± 0.80	50.31 ± 0.50	57.34 ± 0.41		
MAML-ext	39.54 ± 0.62	$\textbf{52.20} \pm \textbf{0.51}$	$\textbf{59.36} \pm \textbf{0.39}$		

Observations

- The overall accuracy in digit classification is better than in command classification.
 - This implies that, in a user-defined scenario, the system performance will be affected by the keywords users pick.
- MAML based approaches perform much better than conventional supervised learning in a few-shot situation.
- Our proposed approach outperforms the original MAML.
 - We attribute the improvement to the use of prior information of the fixed classes.

User-defined vs. Predefined

Fig. 2. Accuracy with changing shot on digits classification.

Conclusion

- In this piece of work, we formulate a user-defined scenario of spoken term classification as a few-shot learning problem.
- We define a N+M-way K-shot problem which we believe is a more realistic problem.
- We solve the problem by extending the original MAML.

Future Work

- There is a performance gap between a user-defined system and a predefined system.
- Narrow the gap with data augmentation techniques.
- Explore other meta learning methods.

