







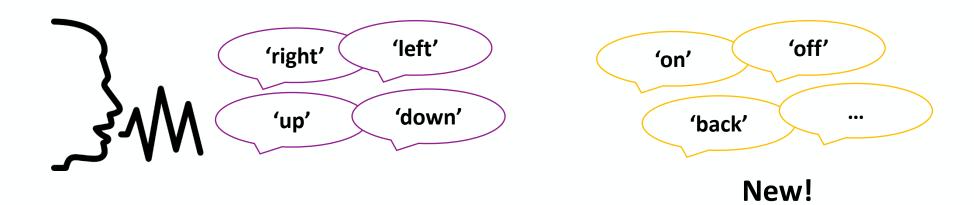
### A Meta-learning Approach for User-defined Spoken Term Classification with Varying Classes and Examples

Yangbin Chen<sup>1</sup>, Tom Ko<sup>2</sup>, Jianping Wang<sup>3</sup>

- 1. The Chinese University of Hong Kong
- 2. Southern University of Science and Technology
  - 3. City University of Hong Kong

#### User-defined command recognition

- Allow users to enroll new commands (spoken terms) by recording only a few audio examples in a voice-based human-device interaction system.
- In practice, the number of both newly added commands and prerecorded audio examples for each command should not be limited.

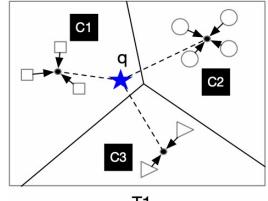


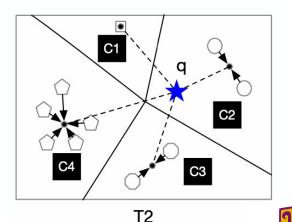


## Prototypical networks for few-shot classification

- Learn with limited labelled data of new classes by using knowledge from previous classes.
- Often defined as N-way, K-shot
- In our work, N and K are flexible.

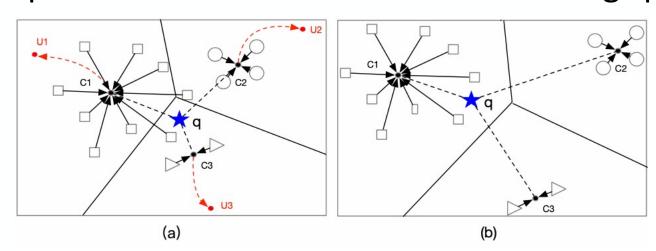
- Sample various few-shot classification tasks and train a backbone model using episodic training.
- It tends to minimize the within-class distance and maximize the between-class distance.





# Improved strategies towards varying classes and examples

- After investigating the effect of N and K in the training phase, we use a significant N and a varying K for training.
- We add a Max-Mahalanobis Center (MMC) loss-based regularizer to force the prototypical representations of different classes to move far apart from each other in the embedding space.



$$L_{ au}^{reg} = rac{1}{2}lograc{\sum_{i}K_{ au,i}||oldsymbol{c}_{i}-oldsymbol{u}_{i}||_{2}^{2}}{\sum_{i}K_{ au,i}}$$

$$L_{ au}^{total} = L_{ au} + \lambda L_{ au}^{reg}$$



#### Experimental results

Table 2: Accuracy with 95% confidence intervals of experiments on N+2-way, 5-shot classification tasks.

|                  |                  | Testing                            |                                    |
|------------------|------------------|------------------------------------|------------------------------------|
| Training         | 5+2-way          | 10+2-way                           | $N_{	au}$ +2-way                   |
| Superv.L.        | $27.52 \pm 0.27$ | $24.83 \pm 0.38$                   | -                                  |
| Transf.L.        | $62.67 \pm 0.38$ | $54.43 \pm 0.47$                   | -                                  |
| MAML             | $67.57 \pm 0.91$ | $63.22 \pm 0.71$                   | _                                  |
| 1+2-way          | $62.73 \pm 0.12$ | $52.32 \pm 0.05$                   | $63.14 \pm 0.21$                   |
| 2+2-way          | $74.33 \pm 0.10$ | $65.21 \pm 0.05$                   | $54.42 \pm 0.25$                   |
| 3+2-way          | $75.32 \pm 0.10$ | $66.38 \pm 0.04$                   | $75.09 \pm 0.16$                   |
| 5+2-way          | $76.38 \pm 0.10$ | $67.84 \pm 0.04$                   | $76.47 \pm 0.16$                   |
| 10+2-way         | $76.30 \pm 0.09$ | $67.92 \pm 0.04$                   | $76.39 \pm 0.15$                   |
| 15+2-way         | $76.28 \pm 0.09$ | $67.55 \pm 0.04$                   | $76.23 \pm 0.16$                   |
| 20+2-way         | $76.86 \pm 0.09$ | $\textbf{68.44} \pm \textbf{0.04}$ | $76.78 \pm 0.15$                   |
| $N_{	au}$ +2-way | $76.90 \pm 0.09$ | $68.13 \pm 0.04$                   | $\textbf{76.82} \pm \textbf{0.16}$ |

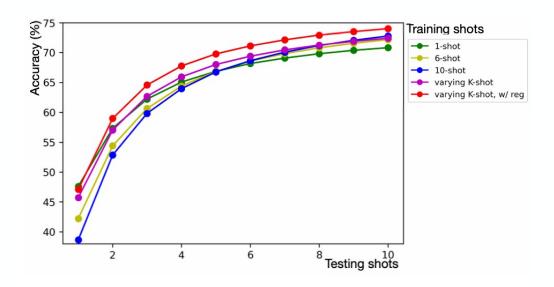


Figure 3: Experiments on 20+2-way, K-shot tasks for training and 10+2-way, K-shot tasks for testing.

Table 3: Accuracy with 95% confidence intervals of experiments on 10+2-way,  $K_{\tau,i}$ -shot tasks for testing.

|                           | Testing                            |
|---------------------------|------------------------------------|
| Training                  | $K_{	au,i}$ -shot                  |
| 1-shot                    | $66.32 \pm 0.05$                   |
| 2-shot                    | $65.94 \pm 0.06$                   |
| 4-shot                    | $66.20 \pm 0.06$                   |
| 6-shot                    | $64.96 \pm 0.07$                   |
| 8-shot                    | $64.11 \pm 0.07$                   |
| 10-shot                   | $64.60 \pm 0.07$                   |
| $K_{	au,i}$ -shot         | $67.29 \pm 0.06$                   |
| $K_{	au,i}$ -shot (w/reg) | $\textbf{68.87} \pm \textbf{0.06}$ |



#### Experimental results

Table 4: Accuracy with 95% confidence intervals of experiments on  $N_{\tau}$ -way,  $K_{\tau,i}$ -shot tasks for testing.

|                                       | Testing                            |
|---------------------------------------|------------------------------------|
| Training                              | $N_{	au}$ -way, $K_{	au,i}$ -shot  |
| 1+2-way, 1-shot                       | $75.02 \pm 0.17$                   |
| 1+2-way, 5-shot                       | $74.92 \pm 0.17$                   |
| 5+2-way, 1-shot                       | $75.02 \pm 0.17$                   |
| 5+2-way, 5-shot                       | $74.92 \pm 0.17$                   |
| 10+2-way, 1-shot                      | $75.23 \pm 0.17$                   |
| 10+2-way, 5-shot                      | $74.56 \pm 0.17$                   |
| 20+2-way, 1-shot                      | $74.90 \pm 0.17$                   |
| 20+2-way, 5-shot                      | $74.95 \pm 0.17$                   |
| 20+2-way, 10-shot                     | $72.88 \pm 0.17$                   |
| <b>20+2-way,</b> $K_{\tau,i}$ -shot   | $\textbf{75.77} \pm \textbf{0.16}$ |
| 20+2-way, $K_{\tau,i}$ -shot (w/ reg) | $\textbf{77.21} \pm \textbf{0.16}$ |



#### Conclusion

- Prototypical networks learn discriminative representations for fewshot classification tasks.
- When testing in N-way, K-shot tasks with varying N and K, episodic training with a significant N and a varying K improves the final performance.
- The MMC loss strengthens representation learning of prototypical networks by moving the centers of different classes apart from each other.

#### **THANK YOU!**

