

Generating Adversarial Examples by Adversarial Networks for Semi-Supervised Learning

Yun Ma*, Xudong Mao*, Yangbin Chen, and Qing Li

WISE 2019

Semi-Supervised Learning

Semi-Supervised Learning

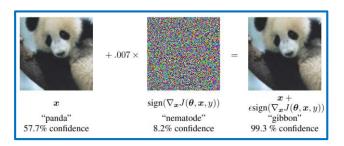
- Deep models for semi-supervised learning
 - ☐Generative models based methods
 - ☐ Perturbation based methods
- Virtual Adversarial Training (VAT) [Miyato et al. TPAMI 2018]: a new perturbation based approach
 - ☐ Enforce the consistency between the predictions on a sample and its adversarial variant

$$\mathcal{L}_{\text{nll}}(C) + \beta \mathcal{L}_{\text{vat}}(C)$$

$$\mathcal{L}_{\text{nll}}(C) = \mathbb{E}_{(x,y)\sim\mathcal{D}_l} \left[-\log C(y|x) \right],$$

$$\mathcal{L}_{\text{vat}}(C) = \mathbb{E}_{x\sim\mathcal{D}_l\cup\mathcal{D}_u} \left[D[C(\cdot|x), C(\cdot|x + r_{\text{vadv}})] \right],$$

$$r_{\text{vadv}} = \underset{\|r\|_2 \le \epsilon}{\operatorname{arg max}} D[C(\cdot|x), C(\cdot|x + r)]$$



Adversarial Examples [Goodfellow et al. ICLR 2015]

Our Solution

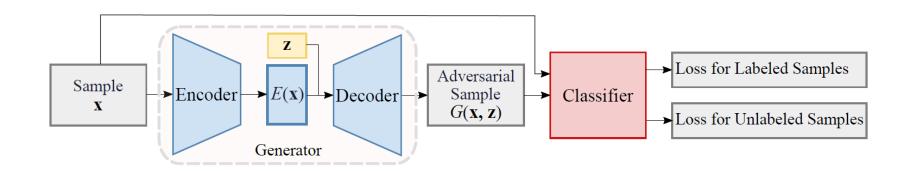
Motivation

- □VAT only considers adversarial samples with pixel-wise perturbations
- Other types of adversarial samples can also be useful

Contribution

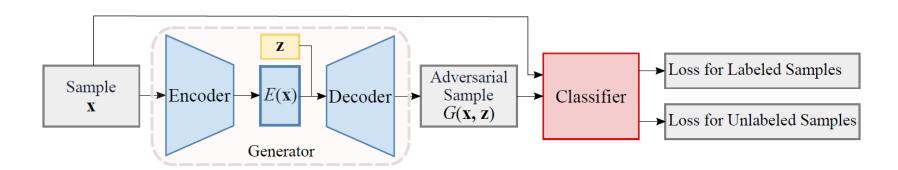
- ☐ Propose to adversarially train a classifier and an adversarial sample generator
- ☐ Design an encoder-decoder architecture generator to create adversarial samples from the latent space

Generating Adversarial Examples by Adversarial Networks



- ☐ Generator: Aims to generate adversarial examples to fool the classifier
- Classifier: Aims to classify the original samples and the adversarial examples consistently

Generating Adversarial Examples by Adversarial Networks



Adversarial Loss

$$\min_{C} \max_{G} \mathcal{L}_{adv}(G, C) = \mathbb{E}_{x \sim \mathcal{D}_l \cup \mathcal{D}_u} \left[D[C(\cdot | x), C(\cdot | G(x, z))] \right]$$

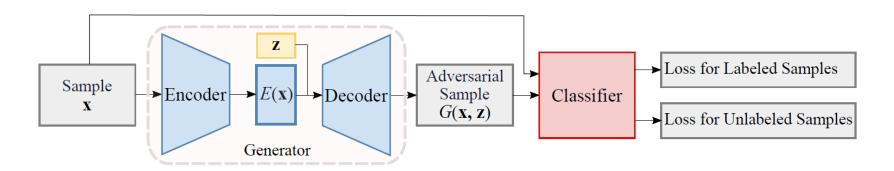
Reconstruction Loss

$$\min_{G} \mathcal{L}_{\text{reconst}}(G) = \mathbb{E}_{x \sim \mathcal{D}_l \cup \mathcal{D}_u}[\|x - G(x, z)\|_2^2]$$

Full Loss

$$\min_{C} \max_{G} \mathcal{L}(G, C) = \mathcal{L}_{\text{nll}}(C) + \alpha \mathcal{L}_{\text{adv}}(G, C) - \lambda \mathcal{L}_{\text{reconst}}(G)$$

Generating Adversarial Examples by Adversarial Networks



Latent Space based Adversarial Example Generation: Go beyond pixel-wise adversarial perturbations

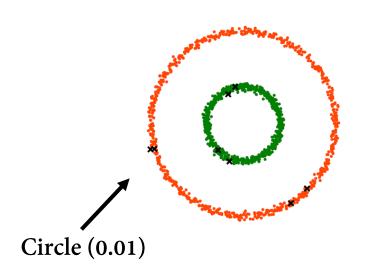
- ☐ To generate adversarial samples semantically close to the original samples
- ☐ Implement by **differentiating the responsibilities** of the encoder and the decoder decoder

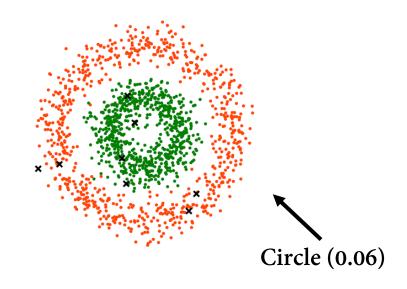
$$\min_{C} \max_{G} \mathcal{L}(G, C) = \mathcal{L}_{\text{nll}}(C) + \alpha \mathcal{L}_{\text{adv}}(G, C) - \lambda \mathcal{L}_{\text{reconst}}(G)$$

Experiments

Case Study on Synthetic Data

Semi-Supervised Learning on Two Circles



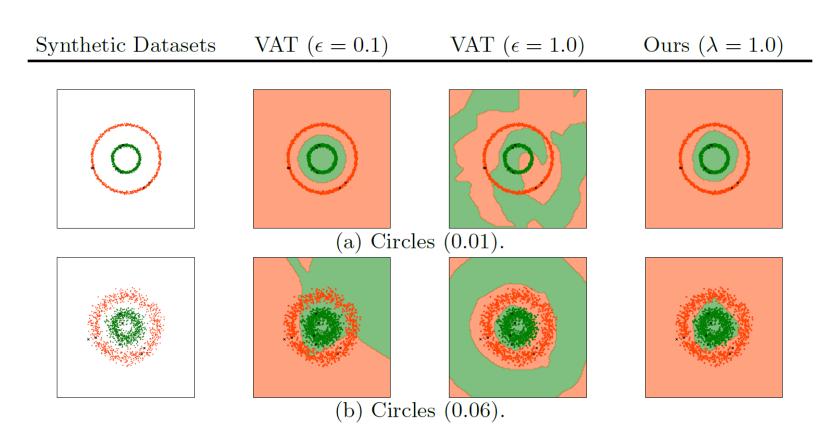


Two classes 8 labeled data points 1500 unlabeled data points

MLP 2-100-50-2 as classifier

Models	Test error rate(%) Circles (0.01) Circles (0.06)		
$\overline{\text{VAT } (\epsilon = 0.1)}$	0.00 (± 0.00) 24.61 (± 4.58)		
VAT $(\epsilon = 1.0)$	$4.59 \ (\pm 5.64) \ 5.10 \ (\pm 4.28)$		
Ours $(\lambda = 1.0)$	$0.00 (\pm 0.00) 4.75 (\pm 5.31)$		

Semi-Supervised Learning on Two Circles



- ➤ Our model shows better robustness in terms of hyper-parameters;
- ➤ The decision boundary from our model shows better reasonableness.

Experiments

Image Classification on MNIST, SVHN, and CIFAR-10

Semi-Supervised Learning on MNIST, SVHN, and CIFAR-10

M- 1-1-	Test error rate(%)		
Models	MNIST	SVHN	CIFAR-10
TSVM [6]	5.38	-	-
Pseudo Ensembles Aggreement [3]	2.87	-	-
Deep Generative Model [15]	$2.40 \ (\pm 0.02)$	-	-
Ladder Networks [23]	$0.84\ (\pm0.08)$	-	$20.4 \ (\pm 0.47)$
CatGAN [26]	$1.73 \ (\pm 0.18)$	-	$19.58 \ (\pm 0.58)$
ALI [8]	-	$7.42 (\pm 0.65)$	$17.99 (\pm 1.62)$
Improved GAN [25]	-	$8.11 (\pm 1.3)$	$18.63 \ (\pm 2.32)$
Triple GAN [18]	-	$5.77 (\pm 0.17)$	$16.99 (\pm 0.36)$
Π model [17]	-	$5.43 (\pm 0.25)$	$16.55 \ (\pm 0.29)$
FM-GAN+Jacobreg+Tangents [16]	-	$4.39 (\pm 1.2)$	$16.20 \ (\pm 1.6)$
GoodSSLwithBadGAN [7]	-	$4.25~(\pm 0.03)$	$14.41\ (\pm0.03)$
VAT [20]	$1.27 (\pm 0.11)$	$4.28 (\pm 0.10)$	$13.15 \ (\pm 0.21)$
Our Model	$1.17 \ (\pm 0.10)$	3.93 (± 0.07)	12.97 (±0.10)

MNIST: 60000 samples, 1000 samples are labeled SVHN: 73257 samples, 1000 samples are labeled CIFAR-10: 50000 samples, 4000 samples are labeled

Supervised Learning on MNIST, SVHN, and CIFAR-10

Models	Test error rate(%)			
Wodels	MNIST	SVHN	CIFAR-10	
Superivised-only	$1.09 \ (\pm 0.02)$	$2.79 (\pm 0.08)$	6.58 (±0.10)	
Ladder Networks [23]	0.57 (±0.02)	-	-	
Π model [17]	-	$2.54 (\pm 0.04)$	$5.56 (\pm 0.10)$	
Temporal Ensembling [17]	-	$2.74\ (\pm0.06)$	$5.60 \ (\pm 0.10)$	
Adversarial Training [11]	0.78	-	-	
RPT [20]	$0.84 (\pm 0.03)$	-	$6.30 \ (\pm 0.04)$	
VAT [20]	$0.64 (\pm 0.05)$	-	$5.81 (\pm 0.02)$	
Our Model	$0.61\ (\pm0.04)$	$2.49\ (\pm0.06)$	5.51 (± 0.02)	

MNIST: 60000 samples

SVHN: 73257 samples

CIFAR-10: 50000 samples

Experiments

Visualization of Adversarial Samples

Visualization of Adversarial Samples

Original Adversarial Original Adversarial

(a) Color transformation.

(b) Pixel-wise perturbation.

(c) Local spatial transformation.

Original Adversarial Original Adversarial

(a) Color transformation.

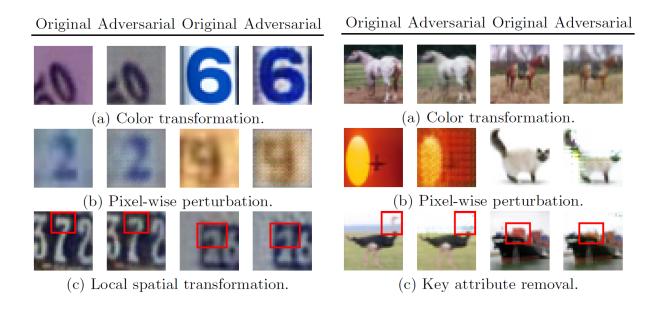
(b) Pixel-wise perturbation.

(c) Key attribute removal.

SVHN

CIFAR-10

Visualization of Adversarial Samples



Our adversarial example types are more diverse than those in VAT

implies better regularization and explains our advantage over VAT in semi-supervised and supervised learning.

Adversarial Samples

VAT [Miyato et al. TPAMI 2018]

Conclusion

- An semi-supervised learning framework regularizing the classifier with generated adversarial samples
 - ☐ Adversarially training
 - ☐ Latent space based adversarial sample generation
 - ☐ Better regularization power with more types of adversarial samples
- Future work
 - ☐ Integrating our framework with other GAN-based models to further enhance model robustness
 - ☐Generalize the framework to other domains

Thank you!