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Part I

Background

3



Smart voice control devices
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Smart voice control systems
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Two typical tasks in a voice control system

‣ Speaker Verification

‣ Spoken Term Classification (Command Recognition)
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New challenges in a voice control system

‣ Speaker Verification

‣ Spoken Term Classification (Command Recognition)
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Problem definition
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‣ Given a training set containing plenty of labelled data and a test set with novel classes 
containing very limited labelled data, how to learn to recognize the novel classes?
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Few-shot learning

‣ Few-Shot Learning (FSL) problem is a machine learning problem that learns with limited 
labelled data of the target tasks by incorporating external source data, which has a different 
distribution from the target data.

‣ Few-Shot Learning (FSL) tasks are a set of tasks, such as few-shot classification, few-shot 
regression, and few-shot reinforcement learning.

‣ Few-Shot Learning (FSL) methods are a set of methods, which aim to solve the few-shot 
learning problem.
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Few-shot classification

‣ Few-Shot Classification is a few-shot learning task, which is defined as N-way, K-shot, 
where
– N is the number of classes in the target task
– K is the number of labelled examples per class
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Challenges and our solutions

‣ How to bridge the gap between complex models and limited labelled data?
– Some typical Meta-learning algorithms are significant few-shot learning methods.

‣ How to apply meta-learning approaches to smart voice control systems?
– Prototypical Networks for the speaker verification task
– Model-Agnostic Meta-Learning (MAML) for the spoken term classification task

‣ How to solve the weaknesses of current meta-learning approaches and apply them to a wider 
range of few-shot learning tasks?
– A consistency regularizer for meta-learning algorithms
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Understanding Feature Representations for Few-Shot Tasks. Proceedings of International Conference on 
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Part II

Meta-Learning for Small Footprint Text-
independent Speaker Verification
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Text-independent speaker verification

‣ To verify if the test speaker and the enrolled speaker are the same one
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Speaker embedding approach

‣ Front-end DNN for speaker embedding extraction
‣ Backend for similarity measure
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Motivation
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‣ There is a mismatch of the training objective between the front-end DNN and the PLDA 
backend in the speaker embedding approaches.

‣ Prototypical Networks aim at learning a non-linear mapping from the input space to an 
embedding space with a predefined distance metric. 

‣ It is worth to investigate the use of prototypical networks in a small footprint text-independent 
speaker verification task.

Source: “Pattern Recognition and Machine Learning” by Bishop. 
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Prototypical Networks

‣ To train a model which can generalize to new classes not seen in the training set, given only 
a few examples per new class, needs to learn a good representation.

‣ It tends to minimize the within-class distance and maximize the between-class distance.
‣ The distance metric can be defined in a flexible way.
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Jake Snell, Kevin Swersky, and Richard Zemel. “Prototypical networks for few-shot learning.” In: 
Advances in neural information processing systems. 2017. p. 4077-4087.



Episodic training in Prototypical Networks

‣ The model is trained on various meta-tasks and it treats an entire task as a training example.
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Prototypical Networks as SV frontend

‣ Support sets are used for computing class centroids.
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Experimental setup

‣ Training data
– SWBD dataset: 28k recordings from 2.6k speakers
– SRE dataset: 35k recordings from 3.8k speakers

– 4k_full, 4k_2utt, 2k_2utt are sampled to compare the proposed method and the 
conventional one.

‣ Evaluation data
– SRE10

– Both the enrollment and test utterances are truncated to the first 𝑇 ∈ {2,5,10,30} seconds 
of speech, as determined by an energy-based VAD.
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Model structure

‣ A similar model structure as the X-vector * approach
‣ Several layers removed to fulfill the small footprint 

requirement
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*David Snyder, Daniel Garcia-Romero, Gregory Sell, Daniel Povey, and Sanjeev Khudanpur, “X-
vectors: Robust DNN embeddings for speaker recognition,” in IEEE International Conference on 
Acoustics, Speech and Signal Processing, 2018.



Practical implementation of Prototypical Networks

‣ Our work has a large number of speakers in each meta-task, which costs a high memory 
usage. To address this problem, we design an expectation-maximization (EM) like 
algorithm which saves the memory cost and does not affect the performance.

‣ In the E step, the embeddings of the support set are extracted, and the class centroids are 
estimated.

‣ In the M step, the embeddings of the query set are extracted, then the distances and the 
losses are estimated.
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Baseline

‣ Conventional learning approach with different backend metrics
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Backend 
Metric

2s-2s 5s-5s 10s-10s 30s-30s

Euclidean 45.85 46.07 45.85 46.48

Cosine 46.14 46.00 46.02 46.76

LDA+Euclidean 41.23 34.54 29.90 23.04

LDA+Cosine 36.66 28.77 21.94 15.32

LDA+PLDA 34.51 26.26 18.39 12.27

EER(%) of a conventional front-end with different backend metrics. The  front-end models are trained with 2k_2utt 
training set.



Results

‣ Prototypical networks with different backend metrics
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Front-end 
Metric

Backend 
Metric

2s-2s 5s-5s 10s-10s 30s-30s

Euclidean Euclidean 40.94 34.50 30.06 26.01

Euclidean LDA + 
Euclidean

43.66 38.57 33.19 27.29

Euclidean LDA + PLDA 34.34 25.70 18.62 11.81

Cosine Cosine 36.07 29.39 25.72 23.17

Cosine LDA + 
Cosine

36.88 28.52 21.62 14.94

Cosine LDA + PLDA 33.42 24.59 17.37 10.97

EER(%) of prototypical embeddings (10-shots) on SRE10. The front-end models are trained with 2k_2utt training set.



Results

‣ Comparing prototypical networks and baseline approach
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Training set System 2s-2s 5s-5s 10s-10s 30s-30s

2k_2utt Baseline 34.51 26.26 18.39 12.27

Cosine 33.42 24.59 17.37 10.97

4k_2utt Baseline 33.47 24.98 17.44 11.61

Cosine 32.17 22.77 15.46 9.66

4s_full Baseline 29.79 21.48 13.96 8.52

Cosine 30.14 21.28 13.75 8.55

EER(%) on SRE10 with various training sets. 



Observations

‣ The prototypical networks are better than the conventional approach when the front-end is 
directly evaluated with Euclidean or Cosine distance.

‣ LDA brings negative impact when Euclidean distance is used while it does not bring negative 
impact to Cosine distance.

‣ When there are limited amount of training data per speaker, prototypical networks perform 
obviously better than the baseline approach. When the entire training set is used, the two 
approaches obtain similar performance.
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Ko, T., Chen, Y., & Li, Q. Prototypical Networks for Small Footprint Text-independent Speaker Verification. In 
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Part III

Meta-Learning for Few-Shot Spoken Term 
Classification
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Spoken term classification

‣ To recognize spoken terms in the voice signal
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User-defined spoken term classification

‣ Normally, the spoken term is predefined.
– Given plenty of training data, conventional supervised learning could have solved the 

problem nicely.
‣ What about a user-defined scenario?

– Users can define new spoken terms by providing a few audio examples.
‣ We formulate this problem as a few-shot learning problem, specifically, a few-shot 

classification task.

28



Motivation

‣ We try to build a personalized command recognition system for each set of user-defined 
commands.

‣ The system should be able to recognize new commands using only a few examples, while 
external sources can be incorporated during training.

‣ The characteristics of MAML match the requirements of building the system perfectly, and it is 
worth to investigate the feasibility of applying few-shot learning methods to speech tasks.
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Model-Agnostic Meta-Learning (MAML)

‣ To train a model which can adapt to any new task using only a few labelled examples.
‣ The model is trained on various tasks (meta-tasks) and it treats the entire task as a training 

example.
‣ The model is forced to face different tasks so that it can get used to adapting to new tasks.
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Chelsea Finn, Pieter Abbeel, Sergey Levine, “Model-agnostic meta-learning for fast adaptation 
of deep networks,”in Proceedings of the 34th International Conference on Machine Learning 
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Episodic training in MAML

31

Support set Query set Support set Query set



MAML – the meta-learning stage 
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MAML – the fine-tuning stage

‣ Before evaluation, the model will be fine-tuned for a few iterations:
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Extend the few-shot classification problem

‣ In most few-shot studies, all the classes are assumed to be new.
‣ In real-life applications, some of the classes are known.
‣ We define an N+M-way, K-shot problem where

– M is the number of fixed classes
– N is the number of new classes in the target task
– K is the number of examples of each new class

34



Our approach – extended MAML

‣ We fix the output positions of the fixed classes in the neural network classifier.
‣ The fixed classes occur in every meta-task in the meta-learning stage.
‣ The adaptation of fixed classes is not needed in the fine-tuning stage as they have already 

been learned in the meta-learning stage.
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Few-shot spoken term classification

‣ 10+2-way, K-shot
‣ 10 keywords
‣ 2 fixed class: silence and unknown
‣ In the meta-learning stage, meta-

tasks are randomly formed from a 
pool of keywords. 
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Framework of our extended-MAML approach for few-shot spoken term classification.



The algorithm
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Experimental setup

‣ Google Speech Commands dataset (v0.02)
‣ 105,829 1-second audio clips of 35 keywords
‣ We formulate two 10+2-way, K-shot tasks

– ten keywords, silence, and unknown
– Digits classification, which uses digits zero to nine as ten keywords
– Commands classification, which contains ten keywords as: “yes”, “no”, “up”, “down”, 

“left”, “right”, “on”, “off”, “stop”, or “go”
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Model setup

‣ 40-dimensional MFCCs
‣ CNN based model containing 4 convolutional blocks
‣ Each block comprises a 3 x 3 convolutions and 64 filters
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Baselines

‣ Two baselines:
– Conventional supervised learning approach
– Original MAML (which treats the 10+2-way problem as a 12-way problem)
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Results

‣ Few-shot digits classification

‣ Few-shot commands classification
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Methods 1-shot 5-shot 10-shot
Super. L 18.14 ± 0.44 24.83 ± 0.38 28.07 ± 0.34
MAML-ori 44.60 ± 0.98 60.88 ± 0.58 65.18 ± 0.62
MAML-ext 47.42 ± 0.96 63.22 ± 0.71 69.48 ± 0.47

Accuracy with 95% confidence intervals on digits classification.

Methods 1-shot 5-shot 10-shot
Super. L 17.03 ± 0.48 22.42 ± 0.33 25.60 ± 0.26
MAML-ori 33.35 ± 0.80 50.31 ± 0.50 57.34 ± 0.41
MAML-ext 39.54 ± 0.62 52.20 ± 0.51 59.36 ± 0.39

Accuracy with 95% confidence intervals on commands classification.



User-defined vs. predefined
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Accuracy with changing shots on digits classification.



Observations

‣ The overall accuracy in digit classification is better than in command classification.

‣ MAML based approaches perform much better than conventional supervised learning in a 
few-shot situation.

‣ Our proposed approach outperforms the original MAML.
– We attribute the improvement to the use of prior information of the fixed classes.

‣ There is a performance gap between few-shot learning and many-shot learning.

43

Chen, Y., Ko, T., Shang, L., Chen, X., Jiang, X., & Li, Q. An Investigation of Few-Shot Learning in Spoken 
Term Classification. In INTERSPEECH 2020, pp. 2582-2586.



Part IV

Improved Meta-Learning with Interpolation-
based Consistency Regularization
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Motivation

‣ Applications in smart voice control systems prove that meta-learning is an effective solution to 
address the few-shot learning problem.

‣ There exist weaknesses in current meta-learning algorithms, especially in forming 
generalizable decision boundaries (i.e., meta-overfitting).

‣ We aim to propose a regularization technique to solve the meta-overfitting problem.
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The meta-overfitting problem

‣ Conventional meta-learning algorithms may face meta-overfitting problems, which form a 
decision boundary staying too close to the limited labelled examples in the few-shot tasks.
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mixup – an interpolation-based regularization method

‣ Empirical Risk Minimization allows large neural networks to memorize (instead of generalize
from) the training data [1].

‣ mixup encourages the model to behave linearly in-between training examples, which reduces 
the amount of undesirable oscillations when predicting outside the training examples.

‣ We have adopted mixup in semi-supervised learning [2] and unsupervised domain 
adaptation [3].
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MetaMix – our methodology
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MetaMix – our methodology

‣ We generate virtual examples only from the query set for two reasons:
– The query set is responsible for optimizing the meta-objective across different training 

episodes, which is significant to the generalization of the learned initializer.
– Virtual examples generated by interpolating examples from the query set are expected to 

better approximate the real data distribution.
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Experimental setup

‣ Dataset
– mini-ImageNet

• 100 classes, 600 84 × 84 colored images per class, 64 training / 16 validation / 20 testing.
– Caltech-UCSD Birds-200-2011 (CUB)

• 200 classes, 11,788 84 × 84 colored images in total, 100 training / 50 validation / 50 testing.
– Fewshot-CIFAR100 (FC100)

• 100 classes, 600 32 × 32 colored images per class, 60 training / 20 validation / 20 testing.
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Model setup

‣ Baselines
– Prototypical Networks, Matching Network, Relation Network
– MAML, First-Order MAML (FOMAML), Meta-SGD, Meta-Transfer Learning (MTL)

‣ Backbone model
– Shallow CNN with 4 convolutional blocks (Conv([32, 3, 3])+ReLU+BN+MaxPooling([2, 2]))
– ResNet-12 (in MTL)
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Results

‣ Comparison with baselines
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mini-ImageNet CUB FC100
Models 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Matching Network 50.47 ± 0.80 64.83 ± 0.67 57.70 ± 0.87 71.42 ± 0.71 36.97 ± 0.67 49.44 ± 0.71
Prototypical Network 49.33 ± 0.82 65.71 ± 0.67 51.34 ± 0.86 67.56 ± 0.76 36.83 ± 0.69 51.21 ± 0.74

Relation Network 50.48 ± 0.80 65.39 ± 0.72 59.47 ± 0.96 73.88 ± 0.74 36.40 ± 0.69 51.35 ± 0.69
MAML 48.18 ± 0.78 63.05 ± 0.71 54.32 ± 0.91 71.37 ± 0.76 35.96 ± 0.71 48.06 ± 0.73

MetaMix+MAML 50.51 ± 0.86 65.73 ± 0.72 57.70 ± 0.92 73.66 ± 0.74 37.09 ± 0.74 49.31 ± 0.72
FOMAML 45.22 ± 0.77 60.97 ± 0.70 53.12 ± 0.93 70.90 ± 0.75 34.97 ± 0.70 47.41 ± 0.73

MetaMix+FOMAML 47.78 ± 0.77 63.55 ± 0.70 54.81 ± 0.97 72.90 ± 0.74 36.48 ± 0.67 49.48 ± 0.71
MetaSGD 49.93 ± 1.73 64.01 ± 0.90 56.19 ± 0.92 69.14 ± 0.75 36.36 ± 0.66 49.96 ± 0.72

MetaMix+MetaSGD 50.60 ± 1.80 64.47 ± 0.88 57.64 ± 0.88 70.50 ± 0.70 37.44 ± 0.71 51.41 ± 0.69
MTL 61.37 ± 0.82 78.37 ± 0.60 71.90 ± 0.86 84.68 ± 0.53 42.17 ± 0.79 56.84 ± 0.75

MetaMix+MTL 62.74 ± 0.82 79.11 ± 0.58 73.04 ± 0.86 86.10 ± 0.50 43.58 ± 0.73 58.27 ± 0.73

Accuracy with 95% confidence intervals of 5-way, K-shot (K=1, 5) classification tasks on mini-ImageNet, CUB, and FC100 datasets.



Results

‣ Analysis of hyper-parameter in Beta distribution
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Effect of Beta distribution. 9𝛼 is set to 0.1, 0.2, 0.5, 0.8, 1.0, 2.0, 4.0, 8.0.



Results

‣ Ablation study

54

mini-ImageNet CUB
Set(s) 1-shot 5-shot 1-shot 5-shot

Q 50.51 ± 0.86 65.73 ± 0.72 57.70 ± 0.92 73.66 ± 0.74
S 47.87 ± 0.82 62.34 ± 0.65 54.39 ± 0.97 67.23 ± 0.74

Q+S 48.36 ± 0.81 64.06 ± 0.72 54.32 ± 0.93 70.30 ± 0.75
w/o mixup 48.18 ± 0.78 63.05 ± 0.71 54.32 ± 0.91 71.37 ± 0.76

An ablation study of doing mixup on different sets. Q denotes the query set and S
denotes the support set.



Results

‣ Analysis of the effect of the size of training data
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mini-ImageNet CUB FC100
Set(s) 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MAML(100%) 48.18 ± 0.78 63.05 ± 0.71 54.32 ± 0.91 71.37 ± 0.76 35.96 ± 0.71 48.06 ± 0.73
MetaMix+MAML(

100%)
50.51 ± 0.86 65.73 ± 0.72 57.70 ± 0.92 73.66 ± 0.74 37.09 ± 0.74 49.31 ± 0.72

MAML(50%) 46.34 ± 0.82 60.47 ± 0.73 50.78 ± 0.86 65.60 ± 0.81 35.38 ± 0.71 47.93 ± 0.78
MetaMix+MAML(

50%)
48.04 ± 0.79 63.52 ± 0.67 53.22 ± 0.91 70.13 ± 0.70 36.35 ± 0.74 48.11 ± 0.69

A comparison between using 100% and 50% training data; accuracy with 95% confidence intervals of 5-way, K-shot (K=1, 5) classification tasks on 
mini-ImageNet, CUB, and FC100 datasets.



Results

‣ Analysis of the effect of the size of training data

56A comparison among using 100%, 50%, 40%, and 30% of the training data.



Observations

‣ MetaMix improves the performance of all MAML-based algorithms over three datasets; 
meanwhile, MetaMix with MTL achieves state-of-the-art performance.

‣ When +𝛼 is below 1.0, the accuracy is a little lower. When +𝛼 is 1.0 and above, the performance 
maintains a good level.

‣ Mixing examples from only the query set performs best, compared with mixing examples from 
only the support set and mixing examples from both the support set and the query set.

‣ MetaMix performs more robust with the reduction of the size of the training data.
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Part V

Conclusion and Future Work

58



Conclusion

‣ We investigate the use of Prototypical Networks in a small footprint text-independent 
speaker verification task. It outperforms the conventional method, especially when there are 
a limited amount of training data per speaker.

‣ We extend the original Model-Agnostic Meta-Learning(MAML) algorithm to solve an N+M-
way, K-shot problem and apply it to a user-defined spoken term classification task. It 
achieves better performance than the original MAML and conventional supervised method.

‣ We propose an improved meta-learning approach with the interpolation-based consistency 
regularization technique. It improves the performance of MAML-based algorithms and 
achieves state-of-the-art results when integrated with Meta-Transfer Learning. MetaMix is 
less sensitive to the reduction of the source training data, compared to MAML and its variants.
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Future work – smart voice control systems

‣ Our proposed method for speaker verification still relies on the PLDA backend to achieve 
competitive results. We will look for other learnable distance metrics which can facilitate 
PLDA’s performance.

‣ There is a performance gap between our user-defined system and a predefined one. In the 
future, we will try to narrow the gap by improving the algorithm and augmenting the data.

‣ We will find more tasks that need a quick adaptation in smart voice control systems and 
apply improved meta-learning algorithms to them.
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Future work – meta-learning algorithms

‣ Quite a few works make a thorough analysis of meta-learning theoretically. In the future, we 
will do more study about why and how meta-learning can achieve better results than other 
few-shot learning methods.

‣ It is not analyzed about on which conditions meta-learning works. In the future, we will make 
more comparisons on different conditions, such as differences in the size of the source 
data, backbone models, and domains of the tasks.

‣ The N-way, K-shot is not a perfect setting, because both are changing in practical 
applications. In the future, we will redefine a few-shot classification task with varying N and K.
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Thank you!
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