Mixing Up Real Samples and Adversarial Samples for Semi-Supervised Learning Yun Ma*, Xudong Mao*, Yangbin Chen, Qing Li ### Semi-Supervised Learning (SSL) Cluster Assumption: the data distribution forms discrete clusters, and samples in the same cluster tend to share the same class label. ### Consistency Regularization based SSL - Enforcing the model consistency between a sample x and its neighbor \hat{x} - Existing Methods: how to find \hat{x} ? - Local neighborhood approaches - In-between neighborhood approaches - Our Motivation: - unifying the local neighborhood and the in-between neighborhood local neighborhood In-between neighborhood our approach #### Our Approach: AdvMixup - AdvMixup: consider neighborhood formed by the samples lying along the paths between the real samples and adversarial samples. - Consistency Regularization $$\hat{x}_{i,j} = \lambda x_i + (1 - \lambda) x_j^{(adv)},$$ $$\hat{y}_{i,j} = \lambda f_t(x_i) + (1 - \lambda) f_t(x_j),$$ $$\mathcal{L}_{\text{reg}} = \mathbb{E}_{x_i \sim \mathcal{S}_u, x_j \sim \mathcal{S}_u} \left[D_{\mathcal{Y}}[f(\hat{x}_{i,j}), \hat{y}_{i,j}] \right]$$ Adversarial Sample Generation $$x_j^{(adv)} = x_j + r_j^{(adv)}$$ $$r_j^{(adv)} = rg \max_{\|r\|_2 \le \epsilon} D_{\mathcal{Y}} \big[f_t(x_j), f(x_j+r) \big]$$ [Miyato et al. TPAMI 2018] Loss Function $$\mathcal{L}_{\text{nll}} + \beta \mathcal{L}_{\text{reg}}$$ $$\mathcal{L}_{\text{nll}} = \mathbb{E}_{(x_i, y_i) \sim \mathcal{S}_l} \left[-y_i^{\top} \ln f(x_i) \right]$$ #### Our Approach: AdvMixup #### **Advantages of AdvMixup** Consistency regularization approaches are actually fixing the classifier's flaws which violate the cluster assumption. - Compared with local neighborhood approaches: we search the flaws in a more comprehensive area - Compared with in-between neighborhood approaches: we search the flaws which violates the assumption more significantly Prediction error rates of the supervised model on the virtual samples along the real-real interpolation paths defined by the in-between neighborhood based ICT model and the real-adversarial interpolation paths defined by the proposed AdvMixup. ### Case Study on Synthetic Data synthetic data: Two Circles local neighborhood approach: VAT [Miyato et al. TPAMI 2018] In-between neighborhood approach: ICT [Verma et al. IJCAI 2019] our approach: AdvMixup The proposed AdvMixup can (1) successfully separate the two classes and (2) learn a decision boundary in low-density regions #### **Experiments on Benchmark Datasets** | Method | To
1000 labels | 4000 labels | | |----------------------|-------------------|------------------|------------------| | Supervised | 39.95 ± 0.75 | 31.16 ± 0.66 | 21.75 ± 0.46 | | П model [6] | 31.65 ± 1.20 | 17.57 ± 0.44 | 12.36 ± 0.31 | | TempEns [6] | 23.31 ± 1.01 | 15.64 ± 0.39 | 12.16 ± 0.24 | | MT [7] | 21.55 ± 1.48 | 15.73 ± 0.31 | 12.31 ± 0.28 | | VAT [8] | _ | _ | 11.36 ± 0.34 | | VAT+EntMin [8] | _ | _ | 10.55 ± 0.05 | | VAdD [23] | _ | _ | 11.32 ± 0.11 | | VAdD + VAT [23] | _ | _ | 9.22 ± 0.10 | | TempEns+SNTG [15] | 18.41 ± 0.52 | 13.64 ± 0.32 | 10.93 ± 0.14 | | VAT+EntMin+SNTG [15] | _ | _ | 9.89 ± 0.34 | | CT-GAN [13] | _ | _ | 9.98 ± 0.21 | | CVT [24] | _ | _ | 10.11 ± 0.15 | | MT+ fast-SWA [25] | 15.58 ± 0.12 | 11.02 ± 0.23 | 9.05 ± 0.21 | | ICT [9] | 15.48 ± 0.78 | 9.26 ± 0.09 | 7.29 ± 0.02 | | AdvMixup | 9.67 ± 0.08 | 8.04 ± 0.12 | 7.13 ± 0.08 | | Method | To 250 labels | est error rates (%)
500 labels | 1000 labels | |-----------------|------------------|-----------------------------------|------------------| | Supervised | 40.62 ± 0.95 | 22.93 ± 0.67 | 15.54 ± 0.61 | | Π model [6] | 9.93 ± 1.15 | 6.65 ± 0.53 | 4.82 ± 0.17 | | TempEns [6] | 12.62 ± 2.91 | 5.12 ± 0.13 | 4.42 ± 0.16 | | MT [7] | 4.35 ± 0.50 | 4.18 ± 0.27 | 3.95 ± 0.19 | | VAT [8] | _ | _ | 5.42 ± 0.22 | | VAT+EntMin [8] | _ | _ | 3.86 ± 0.11 | | VAdD [23] | _ | _ | 4.16 ± 0.08 | | VAdD + VAT [23] | _ | _ | 3.55 ± 0.05 | | Π+SNTG [15] | 5.07 ± 0.25 | 4.52 ± 0.30 | 3.82 ± 0.25 | | MT+SNTG [15] | 4.29 ± 0.23 | 3.99 ± 0.24 | 3.86 ± 0.27 | | ICT [9] | 4.78 ± 0.68 | 4.23 ± 0.15 | 3.89 ± 0.04 | | AdvMixup | 3.95 ± 0.70 | 3.37 ± 0.09 | 3.07 ± 0.18 | Results on CIFAR-10 (consisting of 50000 training samples) with 1000, 2000, and 4000 labeled samples Results on SVHN (consisting of 73257 training samples) with 250, 500, and 1000 labeled samples #### **Robustness Analysis** Attack the models with adversarial samples crafted with the Fast Gradient Method [Goodfellow et al. ICLR 2015] | Method | $\epsilon_w = 1.0$ | $\epsilon_w = 2.0$ | CIFAR-10 $\epsilon_w = 3.0$ | $\epsilon_w = 5.0$ | $\epsilon_w = 8.0$ | $\epsilon_w = 0.1$ | $\epsilon_w = 0.5$ | $\begin{array}{c} \text{SVHN} \\ \epsilon_w = 1.0 \end{array}$ | $\epsilon_w = 2.0$ | $\epsilon_w = 3.0$ | | |-----------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------------------|--------------------------------|------------------------------|--------------------------------|--|--------------------------------|--------------------------------|-------------------| | Supervised
ICT [9]
AdvMixup | 58.50
24.77
17.40 | 77.73
43.28
30.91 | 86.73
56.24
42.52 | 94.2
69.42
58.59 | 96.91
78.38
70.82 | 19.81
7.72
5.11 | 51.71
28.57
14.59 | 69.94
41.87
24.39 | 82.28
52.35
37.84 | 86.46
58.00
47.63 | white-box attacks | | | | | | | | | | | | | | | Method | $\epsilon_b = 1.0$ | $\epsilon_b = 2.0$ | CIFAR-10 $\epsilon_b = 3.0$ | $\epsilon_b = 5.0$ | $\epsilon_b = 8.0$ | $ \epsilon_b = 0.1$ | $\epsilon_b = 0.5$ | $\begin{array}{c} \text{SVHN} \\ \epsilon_b = 1.0 \end{array}$ | $\epsilon_b = 2.0$ | $\epsilon_b = 3.0$ | | The integration of local neighborhood with in-between neighborhood gives AdvMixup an edge in robustness against adversarial perturbations. #### Conclusion - We propose a new consistency regularization approach for SSL, AdvMixup, by enforcing the model to fit virtual data points on the interpolation paths between training samples and adversarial samples. - By unifying the local neighborhood and in-between neighborhood, AdvMixup outperforms existing methods on both synthetic data and benchmark datasets. Moreover, AdvMixup achieves better robustness against both white-box and black-box attacks with adversarial samples. - Limitation: computational overhead brought by the adversarial sample generation - Future work: evaluate AdvMixup with different adversarial sample generation strategies, study the trade-off between model efficiency and classification performance. ## Thank you!