

Mixing Up Real Samples and Adversarial Samples for Semi-Supervised Learning

Yun Ma*, Xudong Mao*, Yangbin Chen, Qing Li

Semi-Supervised Learning (SSL)

Cluster Assumption: the data distribution forms discrete clusters, and samples in the same cluster tend to share the same class label.

Consistency Regularization based SSL

- Enforcing the model consistency between a sample x and its neighbor \hat{x}
- Existing Methods: how to find \hat{x} ?
 - Local neighborhood approaches
 - In-between neighborhood approaches
- Our Motivation:
 - unifying the local neighborhood and the in-between neighborhood

local neighborhood

In-between neighborhood

our approach

Our Approach: AdvMixup

- AdvMixup: consider neighborhood formed by the samples lying along the paths between the real samples and adversarial samples.
 - Consistency Regularization

$$\hat{x}_{i,j} = \lambda x_i + (1 - \lambda) x_j^{(adv)},$$

$$\hat{y}_{i,j} = \lambda f_t(x_i) + (1 - \lambda) f_t(x_j),$$

$$\mathcal{L}_{\text{reg}} = \mathbb{E}_{x_i \sim \mathcal{S}_u, x_j \sim \mathcal{S}_u} \left[D_{\mathcal{Y}}[f(\hat{x}_{i,j}), \hat{y}_{i,j}] \right]$$

Adversarial Sample Generation

$$x_j^{(adv)} = x_j + r_j^{(adv)}$$

$$r_j^{(adv)} = rg \max_{\|r\|_2 \le \epsilon} D_{\mathcal{Y}} \big[f_t(x_j), f(x_j+r) \big]$$
 [Miyato et al. TPAMI 2018]

Loss Function

$$\mathcal{L}_{\text{nll}} + \beta \mathcal{L}_{\text{reg}}$$

$$\mathcal{L}_{\text{nll}} = \mathbb{E}_{(x_i, y_i) \sim \mathcal{S}_l} \left[-y_i^{\top} \ln f(x_i) \right]$$

Our Approach: AdvMixup

Advantages of AdvMixup

Consistency regularization approaches are actually fixing the classifier's flaws which violate the cluster assumption.

- Compared with local neighborhood approaches: we search the flaws in a more comprehensive area
- Compared with in-between neighborhood approaches: we search the flaws which violates the assumption more significantly

Prediction error rates of the supervised model on the virtual samples along the real-real interpolation paths defined by the in-between neighborhood based ICT model and the real-adversarial interpolation paths defined by the proposed AdvMixup.

Case Study on Synthetic Data

synthetic data: Two Circles

local neighborhood approach: VAT [Miyato et al. TPAMI 2018]

In-between neighborhood approach: ICT [Verma et al. IJCAI 2019]

our approach: AdvMixup

The proposed AdvMixup can (1) successfully separate the two classes and (2) learn a decision boundary in low-density regions

Experiments on Benchmark Datasets

Method	To 1000 labels	4000 labels	
Supervised	39.95 ± 0.75	31.16 ± 0.66	21.75 ± 0.46
П model [6]	31.65 ± 1.20	17.57 ± 0.44	12.36 ± 0.31
TempEns [6]	23.31 ± 1.01	15.64 ± 0.39	12.16 ± 0.24
MT [7]	21.55 ± 1.48	15.73 ± 0.31	12.31 ± 0.28
VAT [8]	_	_	11.36 ± 0.34
VAT+EntMin [8]	_	_	10.55 ± 0.05
VAdD [23]	_	_	11.32 ± 0.11
VAdD + VAT [23]	_	_	9.22 ± 0.10
TempEns+SNTG [15]	18.41 ± 0.52	13.64 ± 0.32	10.93 ± 0.14
VAT+EntMin+SNTG [15]	_	_	9.89 ± 0.34
CT-GAN [13]	_	_	9.98 ± 0.21
CVT [24]	_	_	10.11 ± 0.15
MT+ fast-SWA [25]	15.58 ± 0.12	11.02 ± 0.23	9.05 ± 0.21
ICT [9]	15.48 ± 0.78	9.26 ± 0.09	7.29 ± 0.02
AdvMixup	9.67 ± 0.08	8.04 ± 0.12	7.13 ± 0.08

Method	To 250 labels	est error rates (%) 500 labels	1000 labels
Supervised	40.62 ± 0.95	22.93 ± 0.67	15.54 ± 0.61
Π model [6]	9.93 ± 1.15	6.65 ± 0.53	4.82 ± 0.17
TempEns [6]	12.62 ± 2.91	5.12 ± 0.13	4.42 ± 0.16
MT [7]	4.35 ± 0.50	4.18 ± 0.27	3.95 ± 0.19
VAT [8]	_	_	5.42 ± 0.22
VAT+EntMin [8]	_	_	3.86 ± 0.11
VAdD [23]	_	_	4.16 ± 0.08
VAdD + VAT [23]	_	_	3.55 ± 0.05
Π+SNTG [15]	5.07 ± 0.25	4.52 ± 0.30	3.82 ± 0.25
MT+SNTG [15]	4.29 ± 0.23	3.99 ± 0.24	3.86 ± 0.27
ICT [9]	4.78 ± 0.68	4.23 ± 0.15	3.89 ± 0.04
AdvMixup	3.95 ± 0.70	3.37 ± 0.09	3.07 ± 0.18

Results on CIFAR-10 (consisting of 50000 training samples) with 1000, 2000, and 4000 labeled samples

Results on SVHN (consisting of 73257 training samples) with 250, 500, and 1000 labeled samples

Robustness Analysis

 Attack the models with adversarial samples crafted with the Fast Gradient Method [Goodfellow et al. ICLR 2015]

Method	$\epsilon_w = 1.0$	$\epsilon_w = 2.0$	CIFAR-10 $\epsilon_w = 3.0$	$\epsilon_w = 5.0$	$\epsilon_w = 8.0$	$\epsilon_w = 0.1$	$\epsilon_w = 0.5$	$\begin{array}{c} \text{SVHN} \\ \epsilon_w = 1.0 \end{array}$	$\epsilon_w = 2.0$	$\epsilon_w = 3.0$	
Supervised ICT [9] AdvMixup	58.50 24.77 17.40	77.73 43.28 30.91	86.73 56.24 42.52	94.2 69.42 58.59	96.91 78.38 70.82	19.81 7.72 5.11	51.71 28.57 14.59	69.94 41.87 24.39	82.28 52.35 37.84	86.46 58.00 47.63	white-box attacks
Method	$\epsilon_b = 1.0$	$\epsilon_b = 2.0$	CIFAR-10 $\epsilon_b = 3.0$	$\epsilon_b = 5.0$	$\epsilon_b = 8.0$	$ \epsilon_b = 0.1$	$\epsilon_b = 0.5$	$\begin{array}{c} \text{SVHN} \\ \epsilon_b = 1.0 \end{array}$	$\epsilon_b = 2.0$	$\epsilon_b = 3.0$	

The integration of local neighborhood with in-between neighborhood gives AdvMixup an edge in robustness against adversarial perturbations.

Conclusion

- We propose a new consistency regularization approach for SSL, AdvMixup, by enforcing the model to fit virtual data points on the interpolation paths between training samples and adversarial samples.
- By unifying the local neighborhood and in-between neighborhood, AdvMixup outperforms existing methods on both synthetic data and benchmark datasets.
 Moreover, AdvMixup achieves better robustness against both white-box and black-box attacks with adversarial samples.
- Limitation: computational overhead brought by the adversarial sample generation
- Future work: evaluate AdvMixup with different adversarial sample generation strategies, study the trade-off between model efficiency and classification performance.

Thank you!

