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Semi-Supervised Learning (SSL)
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Cluster Assumption: the data distribution forms discrete clusters, and samples in
the same cluster tend to share the same class label.
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Consistency Regularization based SSL

« Enforcing the model consistency between a sample = and its neighbor i

« Existing Methods: how to find = ?

* Local neighborhood approaches
* In-between neighborhood approaches

« Our Motivation:
+ unifying the local neighborhood and the in-between neighborhood

® @ ®
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local neighborhood In-between neighborhood our approach
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Our Approach: AdvMixup

« AdvMixup: consider neighborhood formed by the samples lying along the paths
between the real samples and adversarial samples.

- Consistency Regularization

T =Av; + (1 — )\):c;adv),

Uij = Mfe(xg) + (1 = X) fe(xy),

Adversarial Sample Generation

[Lreg — E.’L‘iNSu,CL'jNSU [Dy [f(jji,j)a @’i,jﬂ ]

x§ad“) = 1, +frj(.ad“) rj(.adv) = argmax Dy [ fi(z;), f(x; + )] [Miyato et al. TPAMI 2018]
[r]l2<e
« Loss Function
+ B[’feg Lo = E(xz‘,yz’)“’fz [_sz hlf(x@ﬂ
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Our Approach: AdvMixup
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Advantages of AdvMixup

Consistency regularization approaches are actually fixing the classifier’s flaws
which violate the cluster assumption.

« Compared with local neighborhood approaches: we search the flaws in a more
comprehensive area

- Compadred with in-between neighborhood approaches: we search the flaws which
violates the assumption more significantly
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Case Study on Synthetic Data
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synthetic data: local neighborhood approach: In-between neighborhood approach: our approach:
Two Circles VAT [Miyato et al. TPAMI 2018] ICT [Verma et al. IJCAI 2019]

AdvMixup

The proposed AdvMixup can (1) successfully separate the two classes and (2) learn a decision
boundary in low-density regions
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Experiments on Benchmark Datasets

Results on CIFAR-10 (consisting of 50000 training samples)
with 1000, 2000, and 4000 labeled samples

IEEE

Test error rates (%) Test t %

Method 1000 labels 2000 labels 4000 labels Method 750 labels ° err;;(;‘ a;aelfel(;} 1000 labels
Supervised 39.95+0.75 31.164+0.66 21.75+0.46

peree ’ Supervised | 40.62+0.95 22934067 1554+ 0.61
I1 model [6] 31.654+1.20 17.57+£044 12.36=+0.31
TempEns [6] 93.31£1.01 15.64£039 12.16%0.24 I model [6] 9.93+1.15  6.65+0.53  4.824+0.17
MT [7] 91.55£1.48 15.73+£0.31 12.31 +0.28 TempEns [6] 12.624£291  512+£0.13  4.42+0.16
VAT [8] - - 1136 =0.34 MT [7] 4.35 £+ 0.50 418 £0.27 3.95+0.19
VAT+EntMin [8] - - 10.55 £ 0.05 VAT [8] N . 5.42 +0.22
T N, - - Alse=odl VAT+En(Min [8] - ~ 386+0.11

+ VAT [23] - ~0.22+0.10 3
TempEns+SNTG [15] | 18.41 4052 13.644+0.32 10.93+0.14 VAdD [23] - - 416%£0.08
VAT+EntMin+SNTG [15] - —  9.89+0.34 VAdD + VAT [23] - - 3.55x£0.05
CT-GAN [13] - - 9.98 +0.21 II+SNTG [15] 5.07 £ 0.25 4.52 +£0.30 3.824+0.25
CVT [24] - - 1011 +£0.15 MT+SNTG [15] 4.29 +£0.23 3.99 £0.24 3.86 £ 0.27
MT+ fast-SWA [25] 1558 £0.12  11.02£0.23 9.05 = 0.21 ICT [9] 478 + 0.68 49234+0.15 3.80 + 0.04
ICT [9] 1548 £0.78  9.26+0.00  7.29 % 0.02
[ AdvMixup | 9.67+008 804+012 7.13+0.08 ] [AdVM'x“p | 3.95+0.70 3.37+0.09 3.07+ 0'18]

Results on SVHN (consisting of 73257 training samples) with
250, 500, and 1000 labeled samples
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Robustness Analysis

- Attack the models with adversarial samples crafted with the Fast Gradient Method
[Goodfellow et al. ICLR 2015]

Method CIFAR-10 SVHN
ew =10 €, =20 €, =30 €, =50 €, =8.0 | ew = 0.1 ew =05 €, =10 €, =20 €, =30
Supervised 58.50 77.73 86.73 94.2 96.91 19.81 51.71 69.94 82.28 86.46 white-box attacks
ICT [9] 24.77 43.28 56.24 69.42 78.38 7.72 28.57 41.87 52.35 58.00
AdvMixup 17.40 30.91 42.52 58.59 70.82 5.11 14.59 24.39 37.84 47.63
Method CIFAR-10 SVHN
€p = 10 €p = 20 €p = 30 €p = 50 €p = 80 | €y = 0]_ €p = 05 €p = ]_U €y = 20 €p = 30
Supervised | 29.25 39.38 48.83 63.06 75.75 14.37 24.76 36.92 52.91 62.05 black-box attacks
ICT [9] 9.78 12.68 16.03 24.85 37.83 4.19 8.17 15.59 30.43 41.29
AdvMixup 8.62 10.17 12.34 17.34 25.77 3.47 6.62 12.31 24.92 35.39

The integration of local neighborhood with in-between neighborhood gives AdvMixup an edge in
robustness against adversarial perturbations.
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Conclusion

« We propose a new consistency regularization approach for SSL, AdvMixup, by enforcing
the model to fit virtual data points on the interpolation paths between training samples
and adversarial samples.

- By unifying the local neighborhood and in-between neighborhood, AdvMixup
outperforms existing methods on both synthetic data and benchmark datasets.
Moreover, AdvMixup achieves better robustness against both white-box and black-box
attacks with adversarial samples.

- Limitation: computational overhead brought by the adversarial sample generation

 Future work: evaluate AdvMixup with different adversarial sample generation strategies,
study the trade-off between model efficiency and classification performance.
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